A laboratory-scale experiment presents data that reveal the temporal characteristics of solids, biochemical oxygen demand (BOD5) and volatile fatty acids (VFAs) in the aerated liquid swine manure for minimizing odor generation potential during 190-day storage. The performance of 15-day aeration of liquid manure with initial total solids (TS) content from 0.5% to 4.0% was examined at low-intensity aeration rates, i.e., +35 mV oxidation-reduction potential (ORP), 1.0 mg O-2/1 and 3.0 mg O-2/1 dissolved oxygen (DO). Odor generation potential was evaluated using VFAs. The aeration process contributed remarkably to the decomposition of TS, total volatile solids (TVS), BOD5 and VFAs. Moreover, the stabilization of manure due to aeration could last up to 190 days. The TS reduction on day 190 ranging from 6.3% to 32.7%, 20.2% to 39.1%, 19.0% to 41.0% were realized under the intensities of +35 mV ORP, 1.0 and 3.0 mg O-2/1, respectively. At the same time, the reduction of BOD5 and VFAs reached around 7.8% to 69.5%, 17.2% to 79.9% and 21.9% to 91.1%; 0.4% to 91.0%, 60.4% to 95.0% and 70.4% to 94.1%. The liquid manure with low solids (e.g., TS of 0.5% and 1.0%) offered an advantageous condition for aeration treatment, particularly for biodegradation of BOD5 and VFAs. The odor generation potential could also be evaluated by the levels of solids and BOD5 in the manure. Increasing aeration intensity would significantly diminish the odor generation potential for given levels of solids and/or BOD5. Fifteen-day aeration with intensity of 1.0 mg O-2/1 may be recommended at farm level for both odor control and energy savings.